The project, ‘Listen ... I have feelings’: Social and Emotional Learning in Mathematics, evolved from observations and data showing that children in a suburban Catholic Primary school in Victoria’s western region appeared to be disengaged in their learning and lacking in confidence. 2010 school data indicated a need to improve numeracy across the school and that children in the senior level had not reached expected levels of achievement, particularly in mathematics. Wellbeing data (2010/2011) indicated a need to motivate our students to become confident and self-directed learners, and showed student engagement as well below the mean for Victorian Schools.

As a Mathematics teacher working within the Prep Learning Community, and with the school data in mind, I undertook an action research project to improve student learning outcomes by, initially, embedding Social and Emotional Learning (SEL) skills in Mathematics. Working with a collaborative team of three classroom teachers, the Mathematics Leader, the Wellbeing Leader, the Literacy Leader and two additional support staff, the project’s research question was: What are the effects of building social and emotional learning and problem solving through the area of mathematics? Our plan for the future was to embed SEL across other curriculum areas, given the established link between social and emotional learning and academic outcomes (Durlak, Weissberg, Dymnicki, Taylor, & Schellinger, 2011).

We chose to focus initially on the SEL core competency of self-awareness (CEOM, 2009), and took a preventative approach by teaching the Prep Learning Community to identify and label emotions and feelings connected to experiences. This resonated with the World Health Organization (Palmer, 2009) view of self-awareness as an emotional skill needed for children to become confident and creative individuals. Similarly, Bernard (2011) suggests programs and practices should include teaching SEL skills such as persistence, maintaining that children can learn to manage their emotional responses to frustrating or challenging tasks. Kress & Elias (2006) support the notion that balancing curriculum content with SEL skills can help schools to become effective learning centres, and Poon (2010, p. 15) recognises that teachers are able to provide opportunities for purposeful connections and building relationships through their daily interactions with children. Bernard (2011) maintains it is the quality of teaching and the relationships formed that influence a child’s engagement in mathematical learning.

Three Prep grades participated in the research, engaging in daily mathematics instruction using a SEL focus. Each lesson had an explicit mathematical outcome and an explicit SEL outcome. SEL was addressed at the beginning and end of each lesson. Following the mathematical investigation, children shared and recorded their identified feelings, either orally or through snapshot emotional stamps. Circle
Time, timetabled weekly, provided a safe forum for the children to talk about themselves and to unpack their emotions and associated feelings. On recognising that the children were experiencing difficulty in expressing their feelings, the collaborative team changed their teaching strategy to expand the children’s knowledge of emotions and to extend their vocabulary to be able to express their feelings.

We used creative interviewing techniques (Patton, 1990) to visually show the children’s perceptions of the feelings they experienced in mathematics, and Circle Time to gather data. Initial findings from a sample group of 23 children revealed 88% described themselves as happy, although the reasoning to support this response varied considerably. 4% connected their emotional response to learning: ‘I feel angry when I don’t know how to do something.’ 23% connected being happy to a specific mathematics task. 50% of the children either connected their responses to social issues, or were unable to explain their responses. 8% of the children made no connection to mathematics or learning. Overall more than half of the children were not linking their emotions to learning.

Data from a focus group of eight children showed that as they participated in SEL activities such as developing connections using sentence starters – ‘I feel … because …’, ‘I felt … when …’ – to make meaning of the feelings associated with particular emotions, they began to show more confidence in extending the language used to describe their feelings. Responding to observations, teachers were able to adapt their teaching to meet children’s individual needs and to extend their vocabulary. The exchange (right) shows that some children were more capable of reflecting on and recounting their feelings, and importantly, that the children were able to help one another with SEL.

In this example a child struggles to find the language to explain the feelings experienced, despite being able to name an emotion.

Child A: I feel happy when I draw pictures.
Child B asked **Child A** to explain what she meant.
Child A showed through her body language that she was extremely uncomfortable about this question. She sat in silence.
Child C: I think she knows she is happy, but she doesn’t know how to explain this.
Child B provided an explanation. She likened it to her explanation of angry from the previous day’s reflections.
Child B: Angry is like … you feel frustrated so, happy is like …
Group response: You just feel good.
Overall trends showed that after we worked on the language of feelings, 100% of the children had connected emotions and associated feelings to their mathematical experiences. These results were notable when compared with the initial data. The findings reflected a significant shift in the children’s ability to articulate their feelings in connection with their learning in Mathematics, potentially giving them more ability to manage these feelings in ways that supported learning. Survey data collected from parents following a Family Maths Night showed that overall parents supported the change in our classroom practices, with some beginning to recognise the link between SEL and mathematics learning. Many indicated they would continue to support this process through their daily interactions within the home. This was the link we were hoping to achieve – parents supporting classroom practices to transfer learning into the home. Data from an informal teacher focus group showed that all members of the team believed they had received strong support in understanding SEL and that there was a need for further learning. Some spoke of a sense of ownership of the project, and one spoke of the enhanced knowledge, language and skills. The majority believed they needed to continue to develop open questioning strategies to elicit the children’s feelings, and affirmed the strategy of teaching children SEL through mathematics.

This project has demonstrated that collaborative approaches to teaching have benefits both for developing children’s wellbeing and for changing our practice and pedagogy. While teaching SEL through mathematics had been our short-term approach to change, our long-term approach is to sustain and develop the implementation of SEL throughout our learning and teaching. Our starting point for ongoing school improvement is to share our learning with the extended school community.
References